Kyligence 韩卿:改变人类使用数据的习惯,从智能数据云开始
2021-08-06 10:28 Kyligence

7月30日,Kyligence 在上海成功举办 Data & Cloud Summit 2021 行业峰会,本次峰会以" · 数据 · 智能"为主题,聚焦数据服务与管理领域的前沿趋势、领先技术及最佳实践。峰会现场,中国通信学会副秘书长文剑,以及经济学博士、亚洲金融合作协会创始秘书长杨再平进行了开场致辞;来自Gartner、招商银行、微软、联合利华等企业嘉宾进行了精彩的主题演讲,同时各领域合作伙伴也带来了金融科技、云上创新、数字化转型、开源有道四场近 30 个专业的主题分享,总计超过 1000 位嘉宾齐聚现场并进行了热烈讨论。

Kyligence 联合创始人兼 CEO 韩卿在现场正式对外宣布了企业全新"智能数据云"战略、Kyligence 最新产品以及一系列合作伙伴计划。以下是韩卿在峰会现场的演讲实录,他从专业的视角分析了目前企业数据管理面临的痛点,以及进一步详细地阐述了"智能数据云"战略,希望可以给您带来一些启发。

以下是演讲正文:

大家早上好!

非常高兴在今天举办 Kyligence 行业峰会。非常遗憾去年的疫情让我们缺失了一届,不过此刻的我们也非常幸运,“烟花”台风刚刚过去,今天早上黄浦江畔晴空万里。

Kyligence 已经成立五年了,五年来离不开大家的支持,在这里我仅代表中国和美国三百多位小伙伴向客户、合作伙伴、投资人,以及各行各业关心 Kyligence 成长的关注者们表示衷心的感谢,感谢各位在过去对我们的支持、信任,尤其重要的是鞭策!过去五年,Kyligence 有非常多的总结和相应的业务实践,所以今天非常荣幸能够基于过去对中国、美国以及亚太市场的业务实践和对未来技术趋势的观察和了解做一些探讨,此外,接下来我也会向大家汇报一下 Kyligence 未来战略的改变和产品的趋势。

行业假设发生变化

大家知道从上世纪70年代 AC 尼尔森公司介绍了数据集市开始,数据仓库这个技术成为一个必不可少的基础架构。尤其是 Bill Inmon 、Ralph Kimball 两位大拿奠定了数据仓库的理论基础,在这之后数据仓库在 Bill 的自顶向下模式和 Kimball 的自底向上模式之间引起了很多争论,大家相爱相杀了很多年。在当年构建数据仓库的时候有一些假设,例如数据相对比较少,计算、存储比较有限,网络处于低速时期等。

那么问题来了,三四十年之后,在云的时代,数据仓库的行业假设跟以前是不是一样呢?做任何的技术架构,如果它的行业假设有一些变化,那随之采取技术的选择、架构一定是不一样的。那我们今天认为,在云的时代这些行业的假设已经有了巨大的、根本性的改变。今天我非常荣幸可以跟大家分享一些我们在这方面的思考以及总结。

首先,过去数据仓库的构建模式是集中式的,刚才举例介绍到,因为以前人没有非常集中,我们认为把数据集中起来就好了,所以解决了数据烟囱(信息孤岛)问题。但今天数据是天然分布的,数据不仅在不同的系统里面,它们甚至在多个云上,更甚者在一个云、多个数据库里面。

其次,数据量已经大到不可能集中起来,几十个 PB 数据只是一个“起步价”。这么大的数据量,让特别是在云环境下的数据传输变得不再现实。

再看,随着 GDPR 数据隐私法案的来临,企业不可能把所有数据都进行汇总。

所以整个数据仓库构建模式从“Collect”——把所有数据收集起来,到“Connect”——所有数据有机地连接起来,这是第一个改变。

第二,使用数据的人发生了根本性改变。以前都是决策者、专家去使用这些数据,或者有一个专业化的团队,包含项目经理、各种工程师等,经过三个月、六个月给出一个决策方案。而今天使用数据的人已经发生了根本性改变,他们是一线工作者,他们是非技术或者分析岗位的职场人。我们发现企业不可能为每一个业务人员配备一支庞大的分析团队,而且整个数据 IT 构建模式也发生了巨大的变化,没有那么多人去服务它,所以对企业来说,要么投入更多人力、物力赋能数据管理,要么就用技术去改变它。

第三,数据的消费方式发生了变化。以前是从已知问题找已知答案,现在需要从未知问题找未知的答案。早前有一个客户来和我沟通,他说:“假设我是一个数据分析师,我想要分析…"。我说:“停,不对。”现在的业务人员无法了解这么详细,他们希望的是你告诉我有什么,企业可以基于已知的一些数据、文化、能力,并沉淀之后自动推荐给需要的人。例如我们服务平安银行的时候,当工作人员去看一些指标,对方怎么知道现在存款指标非常重要呢?这些应该是系统自动告知,而不是工作人员自己想出来的。同时,现在大家习惯用两样东西,一是手机,二是搜索。所以,市场必须降低整个数据使用的门槛,用技术迭代来帮助客户推送更具价值的数据。

随着数据越来越多,使用端越来越多,数据的搜集与管理变得难上加难;另一方面,企业又希望数据能够多面化,顾及到、赋能到每一个业务人员,这就导致了两者之间不可调和的矛盾愈加明显,越来越混乱。现在的 CIO 已经相当焦虑,我们发现他们找数据的时间远远超过使用数据的时间。“用1个月时间找数据,分析一下只要2分钟”。现状是企业根本不知道有价值的数据在哪里,以前是没有数据,所以企业希望 IT 把数据全部收集起来;而今天是数据太多、信息过载,企业已经不知道该要什么类型的数据。

所以,基于我们过去对业务的一些实践以及与客户的探讨,我们将未来的战略定义在以云技术为核心,以人工智能为推动来解决所有的技术和数据的问题。所以我们全新的战略将变成“智能数据云”。

智能数据云应运而生

我们认为,未来使用数据应该像使用云计算一样简单和方便。今天你需要一个算力的时候,根本不需要知道这些算力是来自英特尔、戴尔,还是惠普,只需要向底层云厂商灵活申请内存、带宽、使用时间即可。现在行业需要的是平台向数据申请人直接给出客户数据、订单数据、实时部署数据等。平台应该要帮企业解决这个问题,这就是一个新的理念或战略——智能数据云,我们可以帮助企业解决这个问题。

Kyligence 在不断增强分析能力之外,会向数据管理转移,将人工智能逐步引入到平台里来。我们会逐步去掉 Hadoop ,平台也会更加智能化和自动化。虽然今天 Hadoop 依然是极具优势的大数据平台,但五年以后、十年以后,随着下一代云技术的发展,数据服务与管理会有新的不一样,我们也相信技术会往云这个方向进行转移。